
Policy Review in Attribute Based Access Control
A Policy Machine Case Study

Sherifdeen Lawa and Ram Krishnan*

University of Texas at San Antonio, Texas, United State
{sherifdeen.lawal,Ram.Krishnan}@utsa.edu

Abstract

The Next Generation Access Control (NGAC), founded on the Policy Machine (PM), is a robust
Attribute Based Access Control (ABAC) framework that enables a structured and flexible approach
for the establishment of Discretionary Access Control (DAC) policies, accommodates limited ex-
pression of non-confinement Mandatory Access Control (MAC) policies, has shown support for all
aspects of the Role Based Access Control (RBAC) standard, and possesses algorithms for both per-
user and per-object review. However, NGAC lacks the mechanism for other critical administrative
review problems like comprehensive approaches to grant authorization (revoke authorization) for a
denied access request (an authorized access request). We proposed approaches to grant authorization
of (one of the administrative operations) any denied user assignment access request as our initial
work in response to the policy review features not in the PM.

Keywords: Attribute Based Access Control, Policy Review, Policy Machine

1 Introduction

Attribute Based Access Control (ABAC) remains to be a promising form of access control. Unlike
traditional access control, ABAC authorization to perform a set of operation is determined by evaluating
attributes associated with the subject, object, and in some cases, environmental conditions against policy,
rules, or relationships that describe the allowable operations for a given set of attributes [5]. However,
one of the open problems of an ABAC system is it auditability(policy review) [11].

The collection and/or organization of protected data for further analysis in accordance with prede-
fined regulations and directives, is refered to as policy review [5]. For instance, a policy review may be
the evaluation of users that are denied access to a particular object, an evaluation of access control entry
an object attribute acquires, etc. Compare to the likes of Access Control List (ACL) and Role Based
Access Control (RBAC), where to determine the set of users who have access to a given resource or the
set of resources a given user may have access to (sometimes referred to as a “before the fact audit”) is
relatively straight forward [11], ABAC is considerably more complicated [5]. For example, in order to
evaluate the set of subjects that have access to a given object in an ABAC system, it requires running a
simulation of access request for every known subject in the environment, since ABAC is an identity-less
access control system.

Furthermore, apart from users and resources, other ABAC elements poses critical policy review
questions. For instance, how can we determine the number of users logged in using environmental
attributes, and how does an administrator determine the access rights delegated among users in ABAC
system? These are some of the critical policy review problems. Without a more complete and efficient

Journal of Internet Services and Information Security (JISIS), volume: 10, number: 2 (May 2020), pp. 67-81
DOI: 10.22667/JISIS.2020.05.31.067

*Corresponding author: Department of Electrical and Computer Engineering, The University of Texas at San Antonio, One
UTSA Circle, San Antonio, TX 78258, USA, Tel: +1-210-458-6293

67

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

methods to answer these policy review questions, ABAC will likely be unusable in cases where legal or
industry regulations prohibit systems that rely solely on auditing techniques [11].

The NIST Next Generation Access Control (NGAC) is one of the two current implementation of
ABAC. The Policy Machine (PM) has been the foundation for the NGAC and can manage policies eas-
ily. Rather than the traditional rule based ABAC policy specification approach, the policy machine has
a unique and simplified approach that implies policy specification through the RBAC-style relations.
Since authorization policies in most existing ABAC models including [6, 10] are expressed in proposi-
tional logic, policy review is an NP-complete or even undecidable problem. However, policy machine
lend itself to an enumerated approach of specifying authorization and policy review is inherently simple
(polynomial time) [3]. Another reason why the policy machine was our pick for this work, is the consis-
tent grow in contribution to the opensource implementations of the policy machine project. At the time
of this writing, there are two independent opensource repositories that implement the policy machine in
(Java and Ruby) two different programming languages. The NIST owned repository is evolving from its
standalone Java program called Harmonia to a web based application through an administrative REST
API. The policy machine leverages on its evolution to demonstrate the power of NGAC and the benefits
it can bring to the security industry [9]. There has been a considerable amount of research work applying
the Policy Machine (PM) [2] - [8] but not so significant contribution has been made to improve the effec-
tiveness and efficiency of the PM. Currently, the NGAC reference model only support users’ capabilities
and access entries audit. While improvement upon the former by reducing the overall time complexity
from cubic to linear run time was done [7], a faster theoretical approach for both per-user and per-object
policy review was also proposed [1].

Other policy review problems not supported by the PM framework but are nonetheless critical in-
cludes review of authorization and prohibition approaches. This is a question of how does an adminis-
trator grant(deny) any user denied(authorized) an access request in the PM without unintended conse-
quence? Section 3 demonstrates the challenge an administrator of the PM may encounter in an attempt
to delegate an administrative authority.

To simplify our exploration, in this work we focus on policy review of an authorization approach and
further narrow our scope to one of the administrative operation (user assignment) in the PM framework.

In summary, the contribution of this work is:

• The development of an algorithm that generates a collection of one or more access request sets
that can authorize a given denied user assignment access request.

This contribution is fundamental to a generalized review of authorization approaches in the PM
framework, thus providing the efficient and effective approach to grant authorization to any denied access
request.

The reminder of this paper is structured as follows. Section 2 provides overview of the policy ma-
chine framework and its components. Section 3 presents a formal problem statement and the scope of
this work. Section 4 details on our observations and claim on the PM Models. Section 5 describe the
approaches to generate an access request sets that each set grant authorization to a given denied user
assignment access request and presents its algorithm. Section 6 is a conclusion of this work.

2 PM Overview

The rest of this section provides an overview of policy machine core data elements and selected rela-
tions pertinent to this work. The assignment, association, prohibition, and obligation are the primary
relations while privileges and restrictions are derived relations from associations and prohibitions in the
PM respectively. For the scope of this work, we only delved into assignment and association relations

68

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

ICU EMR

outpatients
doctors interns

{r,w}

{r}

med adm

group head

aars1

aars2

nurses

intpatients

X − rayslabs

u
r
in

e

bl
o
o
d

n
u
rs
in
g

n
ot
es

surgeries

o
r
th
o
p
ed

ic

Bob

Jane

EMR Access

tr
a
n
sp

la
n
t

p
a
in

m
n
g
t

m
ed

sk
el
et
a
l

a
bd

o
m
in

a
l

Dave Alice

Cathy

Figure 1: Policy Machine Authorization Graph

and concepts related to them. To ease referencing, we provide the formal definition of PM components
discussed in this work in appendix B. Readers with prior knowledge of policy machine fundamentals
may skip this section.

2.1 PM Basic Elements

In figure 1, the following sets: {Alice, Bob, Cathy, Dave, Jane}, {group head, med. adm., doctors,
nurses, interns, ICU}, {blood, urine, skeletal, abdominal, med, pain mngt, orthopedic, transplant},
{labs, X-rays, out patients, inpatients, nursing notes, surgeries, EMR}, {EMR Access}, {aars1 ∪ aars2}
and {r, w} are the instances of the following core elements of the policy machine: finite set of Users,
User Attributes, Objects, Object Attributes, Policy Classes, Administrative Access Rights, and Resource
Access Rights respectively. The finite set of users, user attributes, objects, object attributes, and pol-
icy classes are called the policy elements (PE) of the policy machine. Each element of Administrative
Access Right set are denoted with a prefix ‘c-’/‘d-’ (i.e., create or delete) followed by the paired policy
elements (e.g., uua or oaoa) that translates to the authority(permission) required to perform an operation
creating/deleting a relation between a user and a user attribute or an object attribute and an object at-
tribute. The PM is structured to accommodate multiple policy classes, however, we limit this work to a
single policy class.

2.2 PM Relations

The assignment relation represents the allowed hierarchical relations between policy elements. The
relation ASSIGN, represents all possible assignments between policy elements in a policy class and an
individual assignment can be expressed as either (pei, pe j) ∈ ASSIGN or pei ASSIGN pe j, on elements
pei, pe j of the policy elements. As in figure 1, the tuple (nurses, ICU) assigns nurses to ICU and the
ordered pair is an element of the assignment relation, ASSIGN. For any pei and pe j that are elements of
PE, pe j is said to contain pei if there exist a path from pei to pe j.

The authority(Access right) to perform an operation is granted through associations. The relation
ASSOCIATION, defines the set of possible associations within a policy specification. For a policy class

69

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

containing user(object) attribute, the association (uai, ars j, uak) or (uai, ars j, oak) specifies that all users
contained by uai possess the authority to perform the operations enabled by the access rights in ars j on
uak(oak) and all user(object)attributes it contains.

Figure 1 is an authorization graph, G = (PE, ASSIGN, ASSOCIATION), where the solid downward-
arcing and the dashed downward-arcing connectors are the associations grating resource and adminis-
trative access rights respectively. For instance, the triple association, (doctors, {r, w}, EMR) permits
any user contained by the user attribute doctors to perform both read and write operations on files and
directories (objects and object attributes) contained by EMR.

Access Request, AREQ, is a finite set of possible access requests in a policy specification. A triple
of access request relation, (p, op, argseq), denotes a user associated with a process, p, is requesting to
perform the operation, op, on the resource or policy elements referenced by the argument sequence,
argseq. The Access Decision, Access_Decision, is function that maps an access request, (p, op, argseq),
to a grant or deny of the operation, op, on the argument sequence based on authorities and/or prohibitions
held by the subject associated with the process.

3 Problem Statement and Scope

In the context of policy review, previous contributions were to improve on an existing algorithm in the
policy machine [1, 7]. However, as we have mentioned before, there are other policy review problems
that are not addressed in the policy machine framework. In the following subsections we formalize the
policy review of authorization approaches and provide details on the extent of this work as the basis for
the review of authorization approaches in the policy machine.

3.1 Problem Statement

How do you grant an access if a user is not allowed to perform an operation on an(a) object(subject)?
is undeniably an important policy review question. Currently, the policy machine has no mechanism
to answer this query. The significance of integrating a review function that answers this question is
demonstrated using figure 1.

Assuming the administrative access rights, aars1 = { {‘c-uua’}, {‘c-uaua’}, {‘c-assoc-fr’, ‘c-assoc-
to’}, {‘d-uua’}, {‘d-uaua’}, {‘d-assoc-fr’, ‘d-assoc-to’} } and aars2 = { {‘c-ooa’}, {‘c-oaoa’}, {‘c-
assoc-to’}, {‘d-ooa’}, {‘d-oaoa’}, {‘d-assoc-to’} }. The user contained by the user attribute, interns has
no access right to read any patient record contained by the X-rays object attribute. (i.e., a request by
Alice to read skeletal or abdominal images is denied). At the minimum, the powerset of {{‘c-uua’}, {‘c-
uaua’}, {‘c-assoc-fr’, ‘c-assoc-to’}, {‘c-ooa’}, {‘c-oaoa’}} (i.e., a subset of {aars1 ∪ aars2} without
any delete access right) are the possible access request operations on the policy elements of the graph
to grant Alice’s denied access. However, each of the possible operation can be applied to more than
one combination of policy elements to authorize Alice’s denied access. For instance, the access request
to create an object attribute assignment can be done in two ways to grant Alice a read, r access on
abdominal images (i.e., the object attribute assignment of the abdominal to the labs and X-rays to the
labs object attribute).

Firstly, considering an enterprise scale, there are combinatorial explosion of possible approaches to
authorize(deny) a denied(authorized) access request as demonstrated in the preceding example. Since
access is granted(denied) dynamically through attributes in ABAC, another nontrivial problem is how
to determine the scope of other users granted(denied) capabilities and access entries granted(denied) for
each possible approaches? Apparently, a manual approach to answer these questions is not only time
consuming but also susceptible to unintended authorization.

70

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

To address this lacking feature of the policy machine, we proposed an algorithm for a user assignment
authorization, a foundational algorithm for a generalized policy review of authorization approaches. In a
more general term, the policy review of authorization approaches can be stated as – given a denied access
request, find all the possible sets of one or more access request sets that can authorize the denied access
request such that no strict subsets of any access request set can grant the denied access.

Formally, given AREQD : ∀areqd ∈ AREQD ·
(
Access_Decision(areqd) = deny

)
, find AREQauth :

∀areqd ∈ AREQD, ∀areqA ∈ AREQauth ·
((
∀areq ∈ areqA

·Access_Decision(areq) = {accept}
)
−→ Access_Decision(areqd) = {accept}

)
∧
Å
∀areqs ⊂ areqA ·

Å(
∀areq ∈ areqs ·Access_Decision(areq)

= {accept}
)
−→ Access_Decision(areqd) = {deny}

)ã
3.2 Scope

The PM model has multiple facets – the policy elements and the assignments that make up a policy
element diagram, the association and prohibition that apply the policy element diagram to form the
authorization graph, and obligation that are carried out when access related event occur [4]. However,
in this work, we restrict ourselves to a minimal PM composed of data elements required in the policy
review of a user assignment authorization approach in a single policy class (i.e., finite sets of Users and
User Attributes in a policy class). As a result, applicable classes of administrative access rights for the
authorization of a denied user assignment access request that we considered are:

1. Authority to create an assignment between a user and a user attribute.

2. Authority to create an assignment between user attribute and user attribute.

3. Authority to create an association between user attribute and user attribute.

We assumed privileged users that can grant authorization to a denied user assignment access request
excludes the administrative super user of the PM system.

4 Observations, Derived Components, and Claim

In the following subsections, the distinction of a Principle Administrator and required condition for pol-
icy element deletion were alluded to, and derived notations for a fluid logical expression of our assertion
is enumerated.

4.1 Observations

1. The Principal Authority (PA), also known as the super user, is a compulsory predefined entity of
the PM. The PA is responsible for creating and controlling the policies of the PM in their entirety
and inherently holds universal authorization to carry out those activities within the PM framework.
The access rights held by the principal administrator can be delegated to domain and/or subordinate
administrators except the following:

(a) The access right to create and delete policy class.

(b) The access right to create and delete assignment of attributes to the policy class.

71

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

2. In order to preserve the properties of the policy machine model, a policy element targeted by a
delete operation must not be involved in any defined relation. For example, if a user attribute is
involved in an assignment, association, or prohibition relation, the user attribute cannot be deleted
until it is no longer involved in the relation

4.2 Derived Components

For the simplicity of our formal assertion that all types of delete operations have no effect on any autho-
rization approach, we define a derived function, Authorizing Access Request, and notations.

Definition 1. [Authorizing Access Request] An Authorizing Access Request is a function that takes a
set of denied access requests as input and return a set of one or more access request sets as output for
each denied access request such that the following conditions are satisfied:

1. A given denied access request is authorized if all access requests of the associated access request
set is authorized.

2. A given denied access request cannot be authorized by any strict subsets of the associated access
request set.

A formal expression for this function and its conditions are given as func_aareq : AREQD −→ 22AREQ
,

Where ∀areqd ∈ AREQD, ∀areqA ∈ func_aareq(areqd) ·
Å(
∀areq ∈ areqA

· Access_Decision(areq) = {accept}
)
−→ Access_Decision(areqd) = {accept}

ã
∧
(
∀areqs ⊂ areqȦ

Å(
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
−→ Access_Decision(areqd) = {deny}

ã)
Derived Notations

In order to demonstrate the relationship of a user and a process, simplify the representation of any admin-
istrative access right, and reference any element of an access request we adapt the following notations:

• User’s Process: A user can have a one to many relation with process, while a process can have a
one to one relation with user. We denote a user us associated with a process p as pppus

.

• Generalizing Access Rights: Every administrative access right for the creation and deletion of
policy element is prefixed by ‘c-’ and ‘d-’ respectively, followed by a policy element or a pair
of policy elements (e.g., c-uapc). To generalize, we denote any create and delete administrative
access right as ‘c-*’ and ‘d-*’ respectively.

• Access Request Element: Let areq = (pur , aop, argseq) be a tuple of an administrative access
request. For simplification of expression, we adopt the dot notation to reference the access request
variables. For example, the administrative operation aop in the access request areq is denoted as
areq.aop

72

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

4.3 Claim

The create and delete access rights are the only types of administrative access rights that applies to policy
elements and their relations. However, deletion of any policy element and/or relations can not authorize
any denied access request
Claim: The deletion of any policy element and/or relations can not authorize any denied access request.

That is to say, given an access request set that authorizes a denied access, if there exist an opera-
tion requesting the deletion of any policy element in the access request set and no strict subset of the
access request set can grant the denied access, then the denied access is authorized without the operation
requesting the deletion of a policy element and no strict subset of the access request set can grant the
denied access. In a more general term, we can express this claim formally as follows:

∀areqd ∈ AREQD,∀areqA ∈ func_aareq(areqd) ·
(((
∀areq ∈ areqA : ∃d-∗

∈ areq.aop ·Access_Decision(areq) = {accept}
)

∧

Access_Decision(areqd) = {accept}
)
∧
Å
∀areqs ⊂ areqA·((

∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
∧Access_Decision(areqd) = {deny}

)ã
−→((

∀areq\areqdd : areqdd .aop = d-∗ ∈ areqA ·Access_Decision(areq)

= {accept}
)
∧Access_Decision(areqd) = {accept}

)
∧Å

∀areqs ⊂ areqA ·
((
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
∧Access_Decision(areqd) = {deny}

)ã)
Proof. Let areqd = (pus , Op, argSeq)be a denied the access request of user us, PRIV

′
us

be the finite set
of derived privileges of the user, us, before any access request that deletes policy element and relation,
PRIV

′′
us

be the finite set of derived privileges of the user, us, after any access request that deletes policy
element and relation, (us, ar, at) be the privilege required by the user, us, in order for the denied access
request areqd = (pus , Op, argSeq) to be authorized

(us,ari, ati) ∈ PRIV
′′
us
−→ @(ari = ar∧ati = at)

73

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

5 Approaches

This section, we describe the two scenarios that determine all the possible approaches to grant autho-
rization to a denied request. The relations created through user assignment, an attribute assignment, an
association between user attributes, and their combinations may be applicable in both scenarios. Also,
we proposed an algorithm, UUAReview, that takes a denied request and its authorization graph as an
input and generates (Authorizing Access Requests) a set of access request sets that can authorize the
denied request as output.

Assume areqd = (pus , Op, argSeq) is a denied user assignment access request in an authorization
graph Gauth = (PE, ASSIGN, ASSOCIATION). We refer to the user, us, that the process pus is acting
on his/her behalf as source user, and the user and user attribute of the argument sequence, argSeq, as
target user and target user attribute respectively.

The following are the possible assignment scenarios that exist between the source user, and target
user attribute:

I The source user, us is contained by the target user attribute, or some other user attribute contains
both source user and target user attribute in the authorization graph.

II The source user is not contained by the target user attribute and no user attribute contains both
source user and target user attribute.

5.1 Scenario I: Source User Contained by Target User Attribute

In order to generate the Authorizing Access Requests for areqd , there must exist an association, (uai,
ars j, uak), such that the target user attribute, is contained by uak and the authority to create a user as-
signment, a user attribute assignment, or an association between user attributes is an element of the set,
ars j. The operations of all possible Authorizing Access Requests is the powerset of the access right
set, ars j. However, the resulting number of approaches to authorize the denied access is more than the
number of possible operations, since some operation may be applied to multiple policy elements. Using
figure 2a as an example for this scenario, where the source user, us is contained by target user attribute,
ua1, or source user, us and target user attribute, ua2 are contained by the user attribute ua1.
Supposing aars1 =

{
{c-uuaua1}, {c-uuaua1}, {c-assoc- f rua1 , c-assoc-toua1}

}
, then approaches to autho-

rize the denied request are the conforming operations, 2aars1
1 , on the policy elements, us and ua1 - ua4, by

user, ur.

5.2 Scenario II: Source User Not Contained by Target User Attribute

In this scenario, the associations, (uai, ars j, uak) and (uap, arsq, uar) are required such that uar contains
target user attribute, uat , uai contains uap, uak contains source user, us and uai, and the authority to
create a user assignment, attribute assignment, or association between user attributes is an element of
the access right set, arsq. A subset of the powerset of the access right sets, ars j and arsq provides
the operations to authorize the denied user assignment access request. The partial authorization graph
(with no object and object attributes) of figure 2b illustrates this scenario. For instance in figure 2b, a
denied user assignment access request, areqd = (pus , {c-uuadivision}, 〈ut , group1〉), has the source user
us, not contained by target user attribute, group1, and both source user and target user attribute, are
not contained by the same user attribute. The operations for the approaches that authorize the denied
user assignment, areqd , are subset of the powerset, 2aars1∪aars2

1 , on subset of policy elements in the
authorization graph of figure 2b.

74

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

ua4

PC

ua1

aars1

ur

ua2

ua3

us

(a) Denied user is contained by target user at-
tribute

adminc

PC

division
admina

aars2

group2

u3

group1

ur

u2

u1

adminb

aars1

admd

adme

(b) Denied user not contained by target user
attribute

Figure 2: Partial Authorization Graphs

5.3 Algorithm Specification

Let Gauth = (PE, ASSIGN, ASSOCIATION) be an authorization graph of a policy machine model, where
PE (policy elements) is set of nodes, such that the source user us is an element of PE, ASSIGN is set
of directed edges, and ASSOCIATION is set of annotated arcs. Suppose, areqd = (pus , Op, argSeq) was
a denied access request for the assignment of a target user, to the target user attribute. The algorithm,
UUAReview, generates a set of one or more access request sets that authorize areqd . The following
constitute the specification of the UUAReview algorithm:

• Inputs: The algorithm has two input parameters, the denied access request areqd and its authoriza-
tion graph Gauth. It is assumed an association in the set ASSOCIATION that grants some privileged
user attribute uap the access right to create the denied relation and the privileged user attribute uap

can create assignment and/or association on policy elements that grant the authorization of the
denied access request.

• Output: Whenever the the precondition is satisfied, a returned set AREQA by the algorithm is
a set of one or more access request sets that grant the authorization of the denied access request
and no strict subsets of any access request set in the set AREQA can grant the authorization of the
denied access request.

• Function Header: The UUAReview algorithm is initialized by the function mainUUAReview that
takes the graph Gauth and the denied access request areqd as inputs. The mainUUAReview has
helper functions and are contained in appendix A. The mainUUAReview program runs by first
checking for the two possible scenarios, as previously discussed. If the source user is contained
by ‘target ua′ then the program searches for four different sets of user attributes that create re-
lations to authorize the denied access. The function, targetContainsSource gets called by
mainUUAReview with the denied access request, its authorization graph, the sets of user attributes,
and a privileged user set as parameters.

75

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

Algorithm 1: An algorithm to generate an Authorizing Access Request set for a denied user
assignment access request

Inputs : areqd = (pus , Op, argSeq), Gauth = (PE, ASSIGN, ASSOCIATION)
Output : AREQA =

[
AREQA1, AREQA2,,AREQAn

]
Function mainUUAReview(areqd , Gauth):

1 AREQA ←− { }
2 if ∃ (uai, ars j, uak) ∈ Gauth.ASSOCIATION :

(areqd .user, uat) ∈ ASSIGN+∧ (areqd .user, uak) ∈ ASSIGN+ ∧ (uat , uak) ∈ ASSIGN+ ∧
{areqd ·Op} ∈ ars j then

3 SET-I(userAttrBtwSourceAndTarget) ←− get ua such ua contains source user and
‘target ua′ contains ua

4 SET-II(privilegedUA) ←− get set of privilege ua (i.e., ua that have authority to assign
‘target user′ to ‘target ua′)

5 SET-III(UABtwTargetAndPc) ←− get ua that contains elements of privilegedUA
6 SET-IV(UANotInPrivAndSource) ←− get ua not in any of the previous sets
7 SET-PU(privUser) ←− get users contained by user attributes in privilegedUA
8 SET-ARS(assocSubset) ←− get subsets of ars j such that {areqd ·Op} is an element of the

set
9 return targetContainsSource(areqd , Gauth, AREQA, SET-I, SET-II, SET-III, SET-IV,

SET-PU)

10 else if (areqd .user, uat) /∈ ASSIGN+ ∧ ∃ (uai, ars j, uak), (uap, arsq, uar) ∈
Gauth.ASSOCIATION :

(uat , uar) ∈ ASSIGN+ ∧ (uap, uai) ∈ ASSIGN+ ∧ (areqd .user, uak) ∈ ASSIGN+ ∧ (uai,
uak) ∈ ASSIGN+ ∧ {areqd ·Op} ∈ arsq then

11 UAContainedByUai(SET-1) ←− get the set of user attributes contained by uai.
12 UAContainsUs (SET-2) ←− get the set of user attributes that contain source user
13 UANotInUaiUas(SET-3) ←− get the set of user attributes contained by uak and are not

elements of the sets SET-1 and SET-2
14 UAContainedByUar(SET-4) ←− get user attributes contained by uar%= {ua4 | (ua4, uar)

∈ ASSIGN+}
15 UACanContainTarget(SET-5) ←− get user attributes contained by uar and not contained

by ‘target ua′ and does not contain ‘target ua′

16 UAContainedByTarget(SET-6) ←− get the set of user attributes contained by ‘target ua′

17 privUser (SET-PU) ←− get the set of users contained by uai and uap.
18 assocSubset (SET-ARS) = {arsn | arsn ∈ 2arsq

1 ∧ areqd .op ∈ arsn}
19 return sourceNotContained(areqd , Gauth, AREQA, SET-1, SET-2, SET-3, SET-4, SET-5,

SET-6)
20 else
21 return Authorization cannot be generated
22 end
23 end

76

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

If the second condition is true, then the main function, mainUUAReview calls the function
sourceNotContained. The denied access, its authorization graph, six different sets of user at-
tributes, and a set of privileged user set are passed as parameters to the sourceNotContained.
Both functions called by mainUUAReview utilize the getAssignArgSeqSet and
getAssocArgSeqSet to create argument sequence of assignment and association operation sets re-
spectively. Similarly, getAssignAccessReq and getAssocAccessReq generate assignment and
association access request sets that may grant authorization or may be elements of the cartesian
product returned to mainUUAReview

5.4 Discussion

Computations in the algorithm UUAReview are heavily cartesian product of sets. For computations re-
lated to creating assignment relations, the cardinalities of the sets of user attributes influence the overall
number of possible approaches to grant a denied access. In other words, the more the depth of a pol-
icy element (a node) in the authorization graph, the more the number of assignment approaches that
can authorize the denied access. Furthermore, associations have higher tendency of producing explo-
sive approaches to authorize a denied access if both user attribute sets and access right sets are of high
cardinalities.

In an enterprise with deep/lengthy hierarchies, it may quickly become unwieldy for an administrator
to specify an approach to best grant(deny) an access. We intend to expand our algorithm to other types
of access requests in the policy machine. We also identify the need to integrate a mechanism that in-
telligently provides recommended approach or approaches to grant(deny) an access based on provided
constraints.

6 Conclusion And Future Work

In an effort to establish a policy review of authorization approaches in the PM models, we present this
preliminary work with an algorithm for the review of user assignment authorization approaches. We
intend to expand on our algorithm to capture all other types of access rights.

References
[1] R. Basnet, S. Mukherjee, V. M. Pagadala, and I. Ray. An efficient implementation of next generation access

control for the mobile health cloud. In Proc. of the 3rd International Conference on Fog and Mobile Edge
Computing (FMEC’18), Barcelona, Spain, pages 131–138. IEEE, April 2018.

[2] S. Bhatt, F. Patwa, and R. Sandhu. Abac with group attributes and attribute hierarchies utilizing the policy
machine. In Proc. of the 2nd ACM Workshop on Attribute-Based Access Control (ABAC’17), New York, New
York, USA, pages 17–28. ACM, March 2017.

[3] P. Biswas, R. Sandhu, and R. Krishnan. Label-based access control: An abac model with enumerated au-
thorization policy. In Proc. of the 5th ACM International Workshop on Attribute Based Access Control
(CODASPY’16), New York, New York, USA, pages 1–12. ACM, March 2016.

[4] D. Ferraiolo, S. Gavrila, and W. Jansen. Policy machine: features, architecture, and specification. Technical
Report 7987 Rev. 1, National Institute of Standards and Technology, Internal Report, 2015.

[5] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A. Schnitzer, K. Sandlin,
R. Miller, and K. Scarfone. Guide to attribute based access control (abac) definition and considerations.
Technical Report 800-162, National Institute of Standards and Technology, Special Publication, 2019.

[6] X. Jin, R. Krishnan, and R. S. Sandhu. A unified attribute-based access control model covering dac, mac
and rbac. In Proc. of the 26th IFIP Annual Conference on Data and Applications Security and Privacy

77

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

(DBSec’12), Paris, France, volume 7371 of Lecture Notes in Computer Science, pages 41–55. Springer, July
2012.

[7] P. Mell, J. M. Shook, and S. Gavrila. Restricting insider access through efficient implementation of multi-
policy access control systems. In Proc. of the 8th ACM CCS International Workshop on Managing Insider
Security Threats (MIST’16), New York, New York, USA, pages 13–22. ACM, October 2016.

[8] V. Pagadala and I. Ray. Achieving mobile-health privacy using attribute-based access control. In Proc. of
the 11th International Symposium on Foundations and Practice of Security (FPS’18), Montreal, Quebec,
Canada, volume 11358 of Lecture Notes in Computer Science, pages 301–316. Springer, November 2018.

[9] J. Roberts, G. Katwala, S. Gavrila, and D. Ferraiolo. Web based implementation of policy machine. https:
//pm-master.github.io/pm-master/ [Online: accessed on May 20, 2020], May 2020.

[10] D. Servos and S. L. O. HGABAC. Hgabac: Towards a formal model of hierarchical attribute-based access
control. In Proc. of the 7th International Symposium on Foundations and Practice of Security (FPS’14),
Montreal, Quebec, Canada, volume 8930 of Lecture Notes in Computer Science, pages 187–204. Springer,
November 2014.

[11] D. Servos and S. L. Osborn. Current research and open problems in attribute-based access control. ACM
Computing Survey, 49(4):1–45, January 2017.

——————————————————————————

Author Biography
Sherifdeen Lawal received the Bachelor of Technology in Electrical and Computer
Engineering from University of Technology, Minna, Nigeria in 2007, Master of Sci-
ence in Computer Engineering from University of Texas at San Antonio in 2015. He
is a doctral candidate at the ECE Computer Security Research Group (CSRG) and he
is working on policy review issues in the Attribute Based Access Control.

Ram Krishnan received the Bachelor of Technology in Computer Science and En-
gineering from Pondicherry University in 2001, Master of Science in Computer En-
gineering from New Jersey Institute of Technology in 2004, and Ph.D. in Computer
Science from George Mason University in 2010. He is an Associate Professor in
the Department of Electrical and Computer Engineering at the University of Texas at
San Antonio where he hold the Microsoft President’s Endowed Professorship. His
research interest is in the general area of computer security and he directs the ECE

Computer Security Research Group (CSRG).

78

https://pm-master.github.io/pm-master/
https://pm-master.github.io/pm-master/

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

A Appendix: UUAReview Algorithm Helper Functions

Function getAssignArgSeqSet(SETuaa, SETuac):
1 return the set of the cartesian product of sets SETuaa and SETuac.
2 end

Function getAssocArgSeqSet(SETuaa, SETopb, SETuac):
3 return the set of the cartesian product of sets SETuaa, SETopb, and SETuac.
4 end

Function getAssignAccessReq(SETprivUser, SETOp, SETuaa, SETuac):
5 return the set of the cartesian product of sets SETprivUser, SETOp, and

getAssignArgSeqSet(SETuaa,SETuac)

6 end
Function getAssocAccessReq(SETprivUser, SETOp, SETuaa, SETopb, SETuac):

7 return the set of the cartesian product of sets SETprivUser, SETOp, and
getAssocArgSeqSet(SETuaa,SETopb, SETuac)

8 end
9 Function targetContainsSource(areqd , Gauth, AREQA, SET-I, SET-II, SET-III, SET-IV,

SET-PU):
10 /* If any of the following if statement is true, the function getAssignArgSeqSet

and/or getAssocArgSeqSet are(is) called with the parameters to form a set of

assignment and/or association access request */

11 Add the set of getAssignAccessReq(SET-PU, {c-uuaauk }, {source user}, SET-II) to
AREQA

12 if {c-uauaauk } ∈ ars j then add the set of getAssignAccessReq(SET-PU, {c-uauaauk },
SET-I, SET-II) to AREQA

13 if {{c-uuaauk }, {c-uauaauk }} ⊆ ars j then add the sets of the cartesian product of the
access request sets returned by getAssignAccessReq(SET-PU, {c-uuaauk }, {source user},
SET-IV) and getAssignAccessReq(SET-PU,{c-uauaauk }, SET-IV, SET-II) to AREQA

14 if {c-assoc- f ruak , c-assoc-touak } ∈ ars j then add the set of
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touak }, SET-I, SET-ARS, SET-III)
to AREQA

15 if { {c-uuaauk }, {c-assoc- f ruak , c-assoc-touak } } ⊆ ars j then add the sets of the cartesian
product ofthe access request sets returned by getAssignAccessReq(SET-PU, {c-uuaauk },
{source user}, SET-IV) and getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touak },
SET-IV, SET-ARS, SET-III) to AREQA

16 if { {c-uauaauk }, {c-assoc- f ruak , c-assoc-touak } } ⊆ ars j then add the sets of the cartesian
product of the access request sets returned by getAssignAccessReq(SET-PU,
{c-uauaauk }, SET-I, SET-IV) and getAssocAccessReq(SET-PU, {c-assoc- f ruak ,
c-assoc-touak }, SET-IV, SET-ARS, SET-III) to AREQA

17 if { {c-uauaauk }, {c-uauaauk }, {c-assoc- f ruak , c-assoc-touak } } ⊆ ars j then Add the sets
of the cartesian product of the access request sets returned by
getAssignAccessReq(SET-PU, {c-uuaauk }, {areqd .user}, SET-IV),
getAssignAccessReq(SET-PU, {c-uauaauk }, SET-I, SET-IV), and
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touak }, SET-IV, SET-ARS, SET-III)
to AREQA

18 return AREQA

19 end

79

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

20 Function sourceNotContained(areqd , Gauth, AREQA, SET-1, SET-2, SET-3, SET-4, SET-5,
SET-6, SET-PU):

21 /* The following create sets of access request set that grant source userthe denied

access for any of the if statement that is true. */

22 Add the set of getAssignAccessReq(SET-PU, {c-uuaauk }, {source user}, SET-1) to
AREQA

23 if {c-uauaauk } ∈ ars j then add the set of getAssignAccessReq(SET-PU, {c-uauaauk },
SET-2, SET-1) to AREQA

24 if {c-assoc- f ruak } ∈ ars j∧ {c-assoc-touar } ∈ arsq then add the set of
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touar }, SET-2, SET-ARS, SET-4) to
AREQA

25 if {{c-uuaauk }, {c-uauaauk }} ⊆ ars j then add the cartesian product of the access request
sets returned by getAssignAccessReq(SET-PU, {c-uuaauk }, {source user}, SET-3) and
getAssignAccessReq(SET-PU, {c-uauaauk }, SET-3, SET-1) to AREQA

26 if { {c-assoc- f ruak }, {c-uuaauk }} ⊆ ars j∧ {c-assoc-touar } ∈ arsq then add the cartesian
product of the access request sets returned by getAssignAccessReq(SET-PU, {c-uuaauk },
{source user}, SET-3) and getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touar },
SET-3, SET-ARS, SET-4) to AREQA

27 if { {c-assoc- f ruak }, {c-uauaauk }} ⊆ ars j∧ {c-assoc-touar } ∈ arsq then add the cartesian
product of the access request sets returned by getAssignAccessReq(SET-PU,
{c-uauaauk }, SET-2, SET-3) and getAssocAccessReq(SET-PU, {c-assoc- f ruak ,
c-assoc-touar }, SET-3, SET-ARS, SET-4)

28 if { c-assoc- f ruak } ∈ ars j∧ {{c-assoc-touar }, {c-uauaaur }} ⊆ arsq then add the cartesian
product of the access request sets returned by getAssignAccessReq(SET-PU,
{c-uauaaur }, SET-5, SET-6) and getAssocAccessReq(SET-PU, {c-assoc- f ruak ,
c-assoc-touar }, SET-2, SET-ARS, SET-5) to AREQA

29 if { {c-uuaauk }, {c-uauaauk }, { c-assoc- f ruak } } ⊆ ars j∧ {c-assoc-touar } ∈ arsq then add
the cartesian product of the access request sets returned by
getAssignAccessReq(SET-PU, {c-uuaauk }, source user, SET-3),
getAssignAccessReq(SET-PU, {c-uauaauk }, SET-2, SET-3), and
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touar }, SET-3, SET-ARS, SET-4)

30 if { {c-uuaauk }, { c-assoc- f ruak } } ⊆ ars j∧ { {c-assoc-touar }, {c-uauaaur } } ⊆ arsq

then add the cartesian product of the access request sets returned by
getAssignAccessReq(SET-PU, {c-uuaauk }, {source user}, SET-3),
getAssignAccessReq(SET-PU, {c-uauaaur }, SET-6, SET-5), and
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touar }, SET-3, SET-ARS, SET-5) to
AREQA

31 if { {c-uauaauk }, { c-assoc- f ruak } } ⊆ ars j∧ { {c-assoc-touar }, {c-uauaaur } } ⊆ arsq

then add the cartesian product of the access request sets returned by
getAssignAccessReq(SET-PU, {c-uauaauk }, SET-2, SET-3),
getAssignAccessReq(SET-PU, {c-uauaaur } }, SET-6, SET-5), and
getAssocAccessReq(SET-PU, SET-3, SET-ARS, SET-5) to AREQA

32 if { {c-uuaauk }, {c-uauaauk }, { c-assoc- f ruak } } ⊆ ars j ∧ { {c-assoc-touar }, {c-uauaaur } }
⊆ arsq then add the cartesian product of the access request sets returned by
getAssignAccessReq(SET-PU, {c-uuaauk }, {source user}, SET-3),
getAssignAccessReq(SET-PU, {c-uauaauk }, SET-2, SET-3),
getAssignAccessReq(SET-PU, {c-uauaaur }, SET-6, SET-5), and
getAssocAccessReq(SET-PU, {c-assoc- f ruak , c-assoc-touar }, SET-3, SET-ARS, SET-5) to
AREQA

33 return AREQA
80

Policy Review in ABAC A PM Case Study S. Lawal and R. Krishnan

B Appendix:
PM Core Elements, Relations, and Functions Formal Definitions

Definition 2. [Core Data Elements] The Core Data Elements is the finite set of users, processes, objects,
user attributes, object attributes, policy classes, operations, and access rights represented as U, P, O, UA,
OA, PC, Op, AR respectively. where Op ⊆ 2AR

1 and ARs = 2AR
1 is the non-empty finite set of all subsets

of access rights called access right set, ARs.

Definition 3. [Attributes] The finite set of user and object attributes is called the Attributes, AT.
AT = UA ∪ OA

Definition 4. [Policy Elements] The finite set of Core Data Elements without the Attributes is called the
Policy Elements, PE
PE = U ∪ UA ∪ OA ∪ PC, where O ⊆ OA.

Definition 5. [Assignment] An Assignment is a binary relation ASSIGN on the set PE and the relation
must satisfy the given properties [4].
ASSIGN ⊆ (U × UA) ∪ (UA × UA) ∪ (OA × OA) ∪ (UA × PC) ∪ (OA × PC)

Definition 6. [Association] An Association is a ternary relation ASSOCIATION that represent the au-
thorization of an access rights between policy elements.
ASSOCITION ⊆ UA × 2AR

1 × AT

Definition 7. [Transitive closure] The transitive closure of the binary relation ASSIGN on the set PE is
the transitive relation ASSIGN+ on the set PE such that ASSIGN+ contains ASSIGN and ASSIGN+ is
minimal.
ASSIGN+ ⊇ ASSIGN

Definition 8. [Containment] For any x and y in PE, x is said to be contained by y, or y is said to contain
x, iff x ASSIGN+ y, i.e. (x, y) ∈ ASSIGN+ x,y ∈ PE : ((x,y) ∈ ASSIGN+ ⇐⇒ ∃s ∈ iseq1PE : (#s >
1∧∀i ∈ {1,,(#s−1)} : ((s(i),s(i+1)) ∈ ASSIGN)∧ x = s(1)∧ y = s(#s))

Definition 9. [Privileges] The Privilege is a ternary relation from a user, an access right, and an attribute.
PRIVILEGE ⊆ U × AR × (PE\PC)

Definition 10. [Access Request] An administrative Access Request AAREQ is a ternary relation from
a process, an administrative operation, and a conforming non-empty argument sequence.
AREQ ⊆ P × Op × Seq1Arg, where Arg = {x |x ∈ PE ∨ x ∈ 2PE ∨ x ∈ 2AR

1 }

Definition 11. [Access Decision] An Access Decision is a function Access_Decision to return an accept
or a deny for any element in the finite set of administrative access request as its input. Formally, the
function can be expressed as:
Access_Decision : AAREQ −→ {accept, deny}

81

	Introduction
	PM Overview
	PM Basic Elements
	PM Relations

	Problem Statement and Scope
	Problem Statement
	Scope

	Observations, Derived Components, and Claim
	Observations
	Derived Components
	Claim

	Approaches
	Scenario I: Source User Contained by Target User Attribute
	Scenario II: Source User Not Contained by Target User Attribute
	Algorithm Specification
	Discussion

	Conclusion And Future Work
	Appendix: UUAReview Algorithm Helper Functions
	Appendix: PM Core Elements, Relations, and Functions Formal Definitions

